

ABSTRACT
Micro-task markets such as Amazon’s Mechanical Turk
represent a new paradigm for accomplishing work, in
which employers can tap into a large population of workers
around the globe to accomplish tasks in a fraction of the
time and money of more traditional methods. However,
such markets have been primarily used for simple, inde-
pendent tasks, such as labeling an image or judging the
relevance of a search result. Here we present a general
purpose framework for accomplishing complex and inter-
dependent tasks using micro-task markets. We describe our
framework, a web-based prototype, and case studies on
article writing, decision making, and science journalism
that demonstrate the benefits and limitations of the ap-
proach.
ACM Classification: H5.m. Information interfaces and
presentation (e.g., HCI): Miscellaneous.
General terms: Algorithms, Design, Economics, Human
Factors.
Keywords: crowdsourcing, Mechanical Turk, human com-
putation, distributed processing, MapReduce, coordination.
INTRODUCTION
Crowdsourcing has become a powerful mechanism for ac-
complishing work online. Hundreds of thousands of volun-
teers have completed tasks including classifying craters on
planetary surfaces (clickworkers.arc.nasa.gov), deciphering
scanned text (recaptcha.net), and discovering new galaxies
(galaxyzoo.org). Crowdsourcing has succeeded as a com-
mercial strategy for accomplishing work as well, with
companies accomplishing work ranging from crowdsourc-
ing t-shirt designs (Threadless) to research and develop-
ment (Innocentive).
One of the most interesting developments is the creation of
general-purpose markets for crowdsourcing diverse tasks.
For example, in Amazon’s Mechanical Turk (MTurk),
tasks range from labeling images with keywords to judging
the relevance of search results to transcribing podcasts.
Such “micro-task” markets typically involve short tasks
(ranging from a few seconds to a few minutes) which users
self-select and complete for monetary gain (typically from

1-10 cents per task). These markets represent the potential
for accomplishing work in a fraction of the time and money
required by more traditional methods [5][14][22][25].
However, the types of tasks accomplished through MTurk
have typically been limited to those that are low in com-
plexity, independent, and require little time and cognitive
effort to complete. The typical task on MTurk is a self-
contained, simple, repetitive, and short one, requiring little
specialized skill and often paying less than minimum wage.
Amazon calls its tasks HITs, for human intelligence tasks.
During February 2010, we scraped descriptions of 13,449
HIT groups posted to Mechanical Turk. The modal HIT
paid $0.03 US. Examples of typical tasks include identify-
ing objects in a photo or video, de-duplicating data, tran-
scribing audio recordings, or researching data details, with
many tasks taking only a fraction of a minute to complete.
In contrast to the typical tasks posted on Mechanical Turk,
much of the work required in many real-world work organ-
izations and even many temporary employment assign-
ments is often much more complex, interdependent, and
requires significant time and cognitive effort [18]. They
require substantially more coordination among co-workers
than do the simple, independent tasks seen on micro-task
markets. The impact of micro-task markets would be sub-
stantially greater if they could also be applied to more
complex and interdependent tasks.

Consider for example the task of writing a short article
about a locale, a newspaper, a travel guide, or a corporate
retreat or an encyclopedia. This is a complex and highly
interrelated task that involves many subtasks, such as de-
ciding on the scope and structure of the article, finding and
collecting relevant information, writing the narrative, tak-
ing pictures, laying out the document and editing the final
copy. Furthermore, if more than one person is involved,
they need to coordinate in order to avoid redundant work
and to make the final product coherent. Many kinds of
tasks ranging from researching where to go on vacation to
planning a new consumer product to writing software share
the properties of being complex and highly interdependent,
requiring substantial effort from individual contributors.
These challenges are exacerbated in crowdsourcing mar-
kets such as MTurk, in which tasks must be simple enough
for workers to easily learn and complete and workers have
low commitment and unknown expertise and skills.

Here we present the CrowdForge framework and toolkit for
crowdsourcing complex work. Our first contribution is
conceptualizing a framework for accomplishing complex

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’11, October 16–19, 2011, Santa Barbara, CA, USA.
Copyright © 2011 ACM 978-1-4503-0716-1/11/10... $10.00. !

CrowdForge: Crowdsourcing Complex Work

Aniket Kittur Boris Smus Susheel Khamkar Robert E. Kraut
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213
nkittur@cs.cmu.edu, boris.smus@gmail.com, susheelkhamkar2@gmail.com, robert.kraut@cs.cmu.edu

mailto:nkittur@cs.cmu.edu
mailto:boris.smus@gmail.com
mailto:susheelkhamkar2@gmail.com
mailto:robert.kraut@cs.cmu.edu

and interdependent tasks from many small contributions in
crowdsourcing markets. The framework provides a small
set of task primitives (partition, map, and reduce) that can
be combined and nested to address many crowdsourcing
problems. Our second contribution is implementing the
framework in a software toolkit, and using this toolkit to
investigate the applicability, strengths, and weaknesses of
the framework across a diverse range of tasks.

MECHANICAL TURK
Amazon’s Mechanical Turk is a “marketplace for work that
requires human intelligence” in which employers post gen-
erally small and self-contained tasks that workers across
the globe can complete for monetary reward. MTurk en-
compasses a large and heterogeneous pool of tasks and
workers; Amazon claims over 100,000 workers in 100 dif-
ferent countries, and as of the time of writing there were
approximately 80,000 tasks available. There has been an
increasing amount of research on Mechanical Turk recent-
ly. A large number of studies have examined the usefulness
of MTurk as a platform for collecting and evaluating data
for applications including machine translation [4] image
databases [7], and natural language processing [22]. There
have also been studies examining the use of MTurk as a
platform for experiments in perception [5][11], judgment
and decision making [13], and user interface evaluation
[14]. Sorokin & Forsyth used Mechanical Turk to tag im-
ages in computer vision research and suggested voting me-
chanisms to improve quality [25]. Little et al. [17] intro-
duced TurKit, discussed later in this paper, a toolkit for
iterative tasks in MTurk.

APPROACH
Our goal is to support the coordination dependencies in-
volved in complex work done using micro-task markets.
Most tasks on these markets are simple, self-contained, and
independent. The audio transcription tasks posted by Cas-
tingwords.com are a rare exception. Castingwords breaks
up an audio stream into overlapping segments, and workers

are employed to generate transcriptions from each audio
segment. These transcriptions are then verified by other
workers, whose work is later automatically put together
into a complete transcription. Unlike the standard micro-
market task, the disaggregation of an audio file into smaller
transcription tasks and the use of a second wave of workers
to verify the work done by the transcriptions involves the
producer/consumer dependency identified in [18]. It also
provides a simple model for many of the elements of our
approach. For example, the transcription task can be broken
up into the following elements:
 A pre-specified partition that breaks up the audio into

smaller subtasks
 A flow that controls the sequencing of the tasks and

transfer of information between them
 A quality control phase that involves verification of

one task by another worker
 Automatic aggregation of the results

The TurKit toolkit for MTurk [17] extends some of these
elements by enabling task designers to specify iterative
flows. Little and colleagues use as an example a text identi-
fication in which the results of multiple workers’ outputs
are voted on and the best sent to new workers, whose work
is then voted on, and so forth. This can also be characte-
rized as a producer/consumer dependency [18], with a flow
between a production task (text identification) and a quality
control task (voting) that serves to aggregate the results.
Our goal is to generalize these elements into a framework
that supports the crowdsourcing of highly complex work.
Specifically, our framework aims to support:
 Dynamic partitioning so that workers themselves can

decide a task partition, with their results in turn gene-
rating new subtasks (rather than the task designer
needing to fully specify partitions beforehand)

 Multi-level partitions in which a task can be broken up
by more than one partition

 Complex flows involving many tasks and workers
 A variety of quality control methods including voting,

verification, or merging items
 Intelligent aggregation of results both automatically

and by workers.
 A simple method for specifying and managing tasks

and flows between tasks
To accomplish these goals our approach draws on concepts
from both organizational behavior [18] and distributed
computing [1][24]. Malone and Crowston [18] note the
general parallels between coordination in human systems
and computer systems. Key challenges in both organiza-
tions and distributed computing include partitioning work
into tasks that can be done in parallel, mapping tasks to
workers/processors, managing the dependencies between
them, and maintaining quality controls [1][2][18][24].
Crowdsourced labor markets can be viewed as large distri-
buted systems in which each person, such as a worker on

Figure 1: Overview of framework for splitting up and
recombining complex human computation tasks.

Mechanical Turk, is analogous to a computer processor that
can solve a task requiring human intelligence. In this way a
crowdsourcing market could be seen as a loosely coupled
distributed computing system [1]. This suggests that some
solutions to managing distributed computing may be prof-
itably applied to crowdsourcing as well.
Our approach builds on the general approach to simplified
distributed computing exemplified by systems such as Ma-
pReduce [6] of breaking down a complex problem into a
sequence of simpler subtasks using a small set of subtask
types (e.g., Maps and Reduces) and managing the depen-
dencies between them. MapReduce was inspired by func-
tional programming languages in which a large array of
data is processed in parallel through a two step process:
first, key/value pairs are each processed to generate a set of
intermediate key/value pairs (the Map phase). Next, values
with identical intermediate keys are merged (the Reduce
phase). Although we use MapReduce terminology as a
convenient analog here, our work builds on a larger tradi-
tion of simplified distributed computing (e.g., [11][21]).
We define three types of subtasks as:
 Partition tasks, in which a larger task is broken down

into discrete subtasks
 Map tasks, in which a specified task is processed by

one or more workers
 Reduce tasks, in which the results of multiple workers’

tasks are merged into a single output
CrowdForge, our prototype system, abstracts away many of
the programming details of creating and managing subtasks
by treating partition/map/reduce steps as the basic building
blocks for distributed process flows, enabling complex
tasks to be broken up systematically and dynamically into
sequential and parallelizable subtasks.
In partition tasks, workers are asked to create a high level
partitioning of the problem, such as creating an outline of
an article with section headings or a list of criteria for buy-
ing a new car. In CrowdForge the partitioning is made an
explicit part of the task itself, with subtasks dynamically
created based on the results of the partition step. Important-
ly, this means that the task designer does not have to know
beforehand all of the subtasks that will be generated. Defin-
ing the division of labor and subtask design are shifted to
the market itself, a key advantage that is novel and unique
to human computation.
In map tasks, a specified processing step is applied to each
item in the partition. In micro-task markets, these tasks
should be simple enough to be completed by a single work-
er in a short amount of time. For example, a map task for
article writing could ask a worker to collect one fact on a
given topic in the article’s outline. Multiple instances of a
map tasks could be instantiated for each partition; e.g.,
multiple workers could be asked to collect one fact each on
the topic in parallel.

Finally, reduce tasks take all the results from a given map
task and consolidate them, typically into a single result. In
the article writing example, a reduce step might take facts
collected for a given topic by many workers and have a
worker turn them into a paragraph.
Any of these steps can be iterative. For example, the topic
for an article section defined in a first partition can itself be
partitioned into subsections. Similarly, the paragraphs re-
turned from one reduction step can in turn be reordered
through a second reduction step.
CASE STUDIES
Before describing implementation details of the system we
first provide examples and evidence of how the system
works in practice through two case studies: article writing
and researching a purchase decision.
Article writing
The first complex task we explored was writing an encyc-
lopedia article. Writing an article is a challenging and in-
terdependent task that involves many different subtasks:
planning the scope of the article, how it should be struc-
tured, finding and filtering information to include, writing
up that information, finding and fixing grammar and spel-
ling, and making the article coherent. While there are ex-
amples of collaborative writing on the Internet, notably
Wikipedia, previous work has shown that the success of
harnessing a large group of contributors is often dependent
on a small core of leaders that do a large proportion of the
work and organize the contributions of others [15][16].
This poses a challenge in micro-task markets where indi-
viduals may not be willing to spend the large amount of
effort needed to be a leader and may not be able to com-

Figure 2: Partial results of a collaborative
writing task.

municate with others in order to coordinate or influence
their behavior. Furthermore, many of the subtasks in-
volved, such as assembling the relevant information or
doing the actual writing, can be time consuming and com-
plex. These characteristics make article writing a challeng-
ing but representative test case for our approach.
To solve this problem we created a simple flow consisting
of a partition, map, and reduce step (see Figure 2). The
partition step asked workers to create an article outline,
represented as an array of section headings such as “Histo-
ry” and “Geography”. In an environment where workers
would complete high effort tasks, the next step might be to
have someone write a paragraph for each section. However,
the difficulty and time involved in researching and writing
a complete paragraph for a heading is a mismatch to the
low work capacity of micro-task markets. Thus we broke
the task up further, separating the information collection
and writing subtasks. Specifically, each section heading
from the partition was used to generate map tasks in which
multiple workers were asked to submit a single fact about
the section (workers were also asked to submit a URL ref-
erence to the source of the fact to encourage high quality
fact collection).
Next, the reduction step asked other workers to create a
paragraph for each section based on the facts collected in
the map step. By separating the collection of information
and writing into two stages we could significantly decrease
the cost of each stage, making the task more suitable for
micro-task workers. In addition, we benefit from other ef-
fects such being able to collect more diverse information.
Finally, since the resulting paragraphs were relatively inde-
pendent, they were themselves reduced into an article by
simply concatenating them1

We used this approach to create five articles about New
York City. Articles cost an average of $3.26 to produce,
and required an average of 36 subtasks or HITs, each per-
formed by an individual worker. Partition-workers identi-
fied 5.3 topics per article in the partition step. The average
number article included 658 words. A fragment of a typi-
cal article is shown in Figure 2; this article consisted of 955
words and 7 sections: brief history, getting there, basic
layout, neighborhoods, getting around, attractions and eth-
nic diversity. It was completed via 36 different HITs for a
total cost of $3.15.

.

To verify the quality of these collaboratively written ar-
ticles, we compared them to articles written individually by
workers and to the entry from the Simple English Wikipe-
dia on New York City [28]. To produce a comparison
group of individually written articles, we created eight
HITs which each requested one worker to write the full
article. To control for motivations associated with reward,
we paid these individuals $3.05, approximately the same
amount as the average group payment. The resulting ar-

1 For other kinds of articles there could be another crowdsourced
reduce phase that integrates the paragraphs.

ticles consisted of an average of 393 words, approximately
60% the length of the collaborative written articles.
We then evaluated the quality of all articles by asking a
new set of workers to each rate a single article based on
four dimensions: use of facts, spelling and grammar, article
structure, and personal preference. Fifteen workers rated
each article on five-point Likert scales. We averaged the
ratings of the 15 raters across the four dimensions to get an
overall quality score for each article.
On average the articles produced by the group were of
higher quality than those produced individually (see Figure
3: mean quality for group-written articles = 4.01 versus
3.75 for individually-written ones, t(11)=2.17, p=.05). The
average quality for the group-written articles was roughly
the same as the Simple English Wikipedia article (Wikipe-
dia quality=3.95). Not only was the average quality of the
group articles higher than the individually written ones, but
as Figure 3 also shows, the variability was lower as well
(t(11)=-2.43, p=.03), with a lower proportion of poor ar-
ticles.
Overall, we found that using CrowdForge to crowdsource
the complex and interdependent task of article writing
worked surprisingly well. Despite the coordination re-
quirements involved in managing and integrating the work
of dozens of workers, each contributing only a small
amount of work, the group-produced articles were rated
higher and had lower variability than individual-produced
articles -- even though individuals were paid the same
amount as the whole group and did not have to deal with
coordination challenges -- and similar in quality to corres-
ponding Simple Wikipedia articles.
Quality Control
In the above study each partition task was completed by a
single worker. This creates the possibility that a single bad
partition (i.e., outline) could have a large negative effect on
the whole task. We found this did occur in one of the group
articles, with a bad outline’s effects cascading down the
task chain. It is remarkable that despite this brittleness, we
still found a robust advantage of the group condition over
the individual condition, speaking to the strength of the

Figure 3: Rated quality of articles about New York
City produced by Mechanical Turk workers acting
individually or as a group using our framework
compared to the quality of the same article on the
Simple English Wikipedia.

approach. However, in many cases we would like to mi-
nimize the likelihood of any task failing due to a single low
quality worker by combining multiple workers’ results.
Our approach to dealing with this challenge is to utilize
additional Map or Reduce tasks to supporting fault toler-
ance and quality control. For example, to represent Cas-
tingwords transcription flow, described earlier, in the
CrowdForge framework, workers verifying the results of
other workers’ outputs can be represented as a Map task
that applies a verification function to each value. Other
kinds of quality control processes can also be applied; for
example, voting on the best choice can be represented as a
Reduce task in which a single output is chosen from mul-
tiple workers’ outputs based on the vote. Other kinds of
human intelligence tasks could also be used, such as a Re-
duce task in which workers combine the best aspects of
other workers’ outputs rather than choosing a single best
output. An advantage of this approach is that quality con-
trol steps are treated the same as other kinds of subtasks,
minimizing added complexity.
A particularly interesting question is whether more com-
plex quality control methods that require human intelli-
gence -- such as combining the best aspects of multiple
workers’ outputs -- would work better than methods such
as simple voting. Merging results (in this case, article out-
lines) could have a number of advantages over voting. The
likelihood of a poor outline could be reduced, since at the
very least – if workers did no merging at all – the best of
the outline options should be chosen. It is also possible that
the merged outlines could be better than the initial outlines,
if the best aspects of each of multiple outlines were com-
bined, or if seeing multiple outlines at once facilitates com-
parison between them and thus leads to better outlines.
To test these hypotheses we ran an experiment on quality
control of article outlines. In the first phase we asked 20
workers to each independently generate an outline for an
article on the recent Gulf of Mexico oil spill using the same
procedure as in the article writing case study above. We
then took these 20 outlines and randomly assigned them to
20 different sets of three outlines (outlines could be in more
than one set). Each set was given to a different worker,
who was asked to create a new outline for the article using
elements from the 3 outlines in his or her set (i.e., a Reduce
task). Workers were instructed to use any elements from
any of the outlines they had available, but were not allowed
to add new elements. This resulted in 20 merged outlines.
For evaluation we crossed the 20 initial and 20 merged
outlines, and asked workers to choose which outline would
result in a better article. To ensure that workers evaluated
both outlines, they were also required to identify matching
elements in the two outlines, following best practices out-
lined in [14]. Merged outlines were rated higher than the
initial outlines: 61% of merged outlines were chosen com-
pared to 39% of initial outlines. A binomial test revealed
the difference in choice preferences were statistically sig-
nificant (p < .001). Histograms of choice preferences for

individual outlines are shown in Figure 4. Merged outlines
also had fewer poor outlines: while 7 of the initial outlines
were preferred 35% or less of the time, no merged outlines
had preference values lower than 35%. Furthermore, the
best merged outlines were considered better than the best
initial outlines: the best initial outline was preferred 74% of
the time, while 3 merged outlines were preferred more than
that with the highest preferred 90% of the time. Together
these results suggest that complex quality control tasks
such as combining the results of multiple workers’ outputs
can be more effective than simple voting. CrowdForge
makes such quality control tasks simple to implement as
Reduce tasks.
Researching a purchase

We also investigated a different task— researching pur-
chase decisions—in order to test the generality of the
framework. Specifically, we applied our framework to
commission decision matrices, in this case to help consum-
ers compare automobiles. This example extends the
framework by showing how one can partition the initial
task on multiple dimensions (or, equivalently, repartition
each element of the original partition). In the partition HIT
for this problem, one worker was given a short description
of a consumer (a hypothetical suburban family that drives
their two children to and from school and enjoys occasional
road trips) and asked to submit criteria they would evaluate
a car on (e.g., reliability, safety). Another worker was given
the same description and asked to submit a list of potential
competitors (e.g., Honda Odyssey, Ford Escape). Combin-
ing the resulting lists yielded a matrix resembling a product
comparison table. In the map step, workers were asked to
submit facts for one cell in the table, for example evidence

Figure 4. Histograms of participants preference
choices for initial and merged outlines.

relevant to safety ratings for the Honda Odyssey they might
find from an online review of the car. Finally, in the reduce
step workers were given all the facts for a cell collected by
workers in the map step, and were asked to write a single
sentence consolidating them.
The entire task was completed in 54 different HITs for a
total cost of $3.70. An excerpt from the resulting product
comparison table is shown in Figure 5. We had no success
getting even a single worker to generate a similar product
comparison chart individually, even when offering more
money than we paid the entire group, suggesting some
complex tasks may not be amenable to completion in mi-
cro-task markets without appropriate decomposition.

PROTOTYPE
We implemented a software prototype to test our approach
by allowing task designers to indirectly use MTurk to solve
complex problems. It was this prototype that generated the
HITs used in the experiments described above. The proto-
type allows task designers to break complex problems
down into sub-problems, to specify the relationship be-
tween the sub-problems, and to generate a solution using
MTurk. The system consists of a web user interface for the
task designer, and a backend server which interfaces with
Amazon’s MTurk servers. The web user interface in Figure
6 allows users to define each step in the problem solving
process and to specify the flow between each step. The
server-side component creates MTurk HITs, consumes
their results, and generates new HITs as needed. The proto-
type is written in Python using Django [8], a high-level
web framework for rapid application development. Boto
[3], a Python interface to Amazon Web Services, is used to
communicate with MTurk. Source code for the prototype is
available at https://github.com/borismus/crowdforge.
The system abstracts the entire process as a problem, which
tracks the state of the current complex task. A problem
references multiple HIT Templates (which may be either
partitions, maps, or reduces), and a flow that defines the
dependencies between the HIT Templates. The prototype
allows multiple problems to exist in parallel, each one
tracking its own currently active HIT Template. HIT Tem-
plates are parameterized templates used to create HITs on
MTurk, specifying basic parameters like title, HTML body
and compensation amount. Finally, flows manage the se-
quential coordination between HITs, as well as transferring
data between HITs. When a user creates a new problem,
they specify which flow to use to solve that problem.

Flows are implemented as python classes which have
the on_stage_completed(self, stage): method. When all of
the hits for the given hit type have been com-
pleted, CrowdForge calls the problem's flow's
on_stage_completed method. Users can create a new flow
by implementing a subclass of crowdforge.flows.Flow and
registering it with crowdforge.flows.register. Crowd-
Forge comes with several pre-built flows, such as
the SimpleFlow which supports the simple partition-map-
reduce scenario we used in generating NYC articles, and
partition selection and verification flows that include addi-
tional verification steps.
The system uses a notification-based flow control mechan-
ism to manage which tasks and templates are posted. Every
few minutes the system monitors active problems for four
kinds of events, and fires notifications as needed. The re-
sult retrieved notification fires when the system detects a
new result from MTurk. The HIT expired notification fires
when a HIT that was posted by the prototype expires due to
the HIT lifetime running out. The HIT complete notifica-
tion fires when all instances of a HIT were completed by
workers. The stage complete notification fires when all
HITs of the currently active HIT Template are completed
or expired. Often, steps in CrowdForge require user sub-
mitted data from previous steps. Since CrowdForge is con-
stantly polling MTurk to get newly submitted results, we
have all of the results from previous submissions in the
Results table in the database. All of these results are linked
to the hit, and the hit type. The flow code can fetch these
results using django's object relational model API.
For example, the simplest predefined flow (Figure 1) starts
with a partition HIT Template, the result of which is fed
into a map HIT Template, the results of which are fed into
a reduce HIT Template. Transitions between these three
HIT Templates occur when the stage complete notification
fires. In the article writing example, this flow takes the
article outline generated by a worker completing a partition
HIT, and creates map HITs to collect facts for each heading
in the outline. Note that this process is dynamic: the num-
ber of headings does not need to be specified beforehand
by the task designer. Once all map HITs for a heading are
complete, the flow posts a reduction HIT to consolidate all
facts collected in the map HITs into a paragraph.
COMPLEX FLOWS
The example of article writing assumed a simple linear
flow from partitioning to mapping to reduction, which may
not be powerful enough to represent some tasks. For more
general cases, subtasks can be themselves be broken down
into partition, map and reduce phases (Figure 7). For ex-
ample, in journalism, writing headlines and leads and soli-
citing quotes themselves can be broken into parallelizable
partition, map and reduce phases. The notification-based
architecture of the CrowdForge prototype allows this kind
of nesting to be implemented as a custom flow (future work
will allow the creation of nested flows using GUI tools). Figure 5: An excerpt from the product

comparison table

https://github.com/borismus/crowdforge

Below, we discuss a case study involving a much more
complex flow.

Crowdsourcing Science Journalism
We chose to address the complex problem of crowdsourc-
ing the science journalism process; i.e., turning a paper
published in an academic venue (such as Science) into a
newspaper article for the general public. This task is chal-
lenging for a number of reasons. Just reading a complete
academic paper may require more motivation and expertise
than any single crowd worker possesses, let alone any sub-
sequently writing. However, seeing only a portion of the
article might not provide workers with the whole story;
thus, it is unsuitable for the simpler partitioning used in the
encyclopedic article case study. Furthermore, a science
article has a particular structure to it that the crowd output
would need to adhere to; enforcing this structure provides
additional constraints. Finally, the task may simply require
more expertise than available in the task market. Thus we
chose this task in the spirit of a “grand challenge”, hoping
that even if the process failed we would learn about where
the CrowdForge approach would break down.
To help us shape this the task we partnered with two pro-
fessional journalists interested in the question of whether
science journalism could be crowdsourced. We started by
choosing an article published in Science examining the role
of social influence in determining popularity in an artificial
music market [22]. Although the research was complex and
moderately technical, we believed that crowd workers
would be able to understand it.
We worked with the journalists to identify a typical struc-
ture for a popular science article, including creating a news
lead, describing what scientists did, what they found, get-
ting a quote from a relevant expert and an author of the
study, and describing implications and future work. For
each of these sections we worked to develop subflows that
would produce them. Some of the subflows required itera-
tion and trying several different approaches. In total our

article generation task involved 11 subflows comprising 31
subtasks, which represent 262 worker judgments and a total
cost of approximately $100. To give an idea of the tasks
involved we will describe two interesting subflows in more
detail below: generating a news lead and describing what
the researchers did.
Generating a news lead requires quickly and succinctly
conveying what the article is about in an engaging way that
draws the reader in. To do this we initially provided work-
ers with the article and asked them to tell us the single most
important thing that a general reader needs to know about
the finding in the paper. However, this task proved to be
too large a chunk for workers to complete. Through several
iterations we discovered task characteristics which made
the process more amenable to workers. First, we used a
“consolidate” process pattern in which the results of a large
set are consolidated down to an input that better matches
the limited attention profile of the worker. A simple exam-
ple is presenting workers with the abstract of a scientific
paper, in which the article authors have already consolidat-
ed the paper the paper down to the key points; however, we
used various forms of consolidation throughout the
process, including generating tags describing key terms
from the abstract (to help find relevant experts) and extract-
ing pieces of the article for different tasks (in the descrip-
tion of research, discussed below). Second, we provided
workers with concrete examples of what we desired from
them, e.g., in the form of an abstract and news lead from an
exemplar article. This “exemplar” pattern proved particu-
larly useful throughout many tasks, as mapping the sample
input and output to the target article made the desired out-
come much clearer than instructions could.
We used similar task patterns (“consolidation” + “exem-
plar”) in the flow for generating a description of the re-
search procedures, although with a slightly different instan-
tiation. First, a partition task asked workers to extract the
sections from the article that corresponded to different ex-
periments. Then, for each experiment workers were asked Figure 7. Nested subtasks forming a complex flow.

Figure 6: Creating a problem with the web
user interface.

to summarize what the researchers actually did, again pro-
viding them with a sample experiment and description.
Evaluation
To evaluate the quality of the resulting items we enlisted
experts with complementary skills, including a professional
journalist, the first author of the Science paper, a graduate
student doing research on social computing, and one of the
authors of this study. Each rater was given a survey asking
them to rate each of 16 news leads and 8 research descrip-
tions on a 7-point Likert scale. Items were arranged in one
of two randomized orders to control for order effects. Ra-
ters were in moderate agreement across items (alpha = .74).
Overall, the results were surprisingly good. According to
the author of the paper, “it was a bit below what you would
see in a high-quality publication like the NY Times, but the
best were not totally different (although the worst were
pretty bad).” The professional journalist had a similar reac-
tion: “I'm really impressed by the quality of the answers.
The abstract from the Salganik paper is not that technical
by the standards of scientific literature, but the key news
point -- that social influence helps determine success -- is
contained in just one line. Yet 7 of the 10 workers who did
the task put that point in their lead.”2

“Blockbusters, bestsellers, hit songs - the main varia-
ble that makes these things more popular than their
lesser-known counterparts is not quality differences,
according to a recent study. The answer lies in social
influence - the more people know a certain movie is
the one to watch, the more likely it will become pop-
ular.” (Best)

 Ratings for the news
leads ranged from 6.25 to 1.25 (higher being better), with a
standard deviation of 1.3. Research descriptions fared less
well, ranging between 4.4 and 1.8 (SD = .93). To provide
some insight into the range of content created, the best
rated (6.25) and worst rated (1.25) news leads are shown
below:

“The psychology of song preference. Song quality
isn't the best predictor of song success.” (Worst)

As indicated in the quotes above the results, while good,
were not perfect. The resulting article would not be likely
to win a Pulitzer, for example, which is not surprising giv-
en that workers were not trained nor expert writers. This
suggests their output might be best used as part of a work
flow in which professional editors or writers subsequently
massage the crowdsourced work. Their value in this regard
was supported by the journalist, who said: “An editor does
not require that a reporter (or in this case a Turker) produce
beautifully polished copy. But editors do need to be confi-
dent that the copy captures the main points of the story,
because editors don't expect to have to do any additional
reporting themselves. From that point of view, the replies
are impressive. The quality of the writing is variable and in
some cases a little muddled, but it is more important to note

2 This quote was from a time when only 10 leads were collected.

that many of the workers produced leads that captured the
newsworthy element of the paper.”
Perhaps more concerning, none of the leads or descriptions
mentioned the important finding that there was high unpre-
dictability about which items became popular. However,
upon discussion the article author noted that “lots of the
‘real’ reporters missed the unpredictability part too”, while
the journalist raised the point that this might actually be
due to differences in audience rather than missing the
point: “the disagreement arises because the two are writing
for different audiences: a journalist for lay readers and an
academic for other researchers. The two audiences often
care about different things.”
Together these results suggest that despite the lack of ex-
pertise, limited time and effort, and limited context pro-
vided by crowd workers, assembling the output of many
small judgments through the proper coordination can result
in highly complex artifacts of surprisingly good quality.

LIMITATIONS
While we have demonstrated some of the strengths of the
CrowdForge approach, here we discuss some limitations.
First, the system currently does not support iteration or
recursion, requiring the task designer to specify each stage
in the task flow (though workers can define their own parti-
tions and thus what future tasks will be). While Crowd-
Forge is compatible with iteration, the strength of existing
crowdsourcing toolkits that focus on iteration (e.g., TurKit)
led us to focus our contribution elsewhere. We plan to
merge both approaches in future work; this would enable,
for example, one stage (e.g., a vote) to determine if another
(e.g., a further partition) is necessary.
Second, and more fundamentally, CrowdForge is based on
the idea that complex work can be broken up into relatively
small and independent pieces with the system managing the
coordination dependencies between those pieces. However,
these assumptions can be violated. For example, it is possi-
ble that some work may not be easily decomposable into
units small enough to match the task capacity of the work-
force. We approached these limits with the science journal-
ism task: although we had workers extract each experiment
in the article separately to minimize the work, they still
needed to read and summarize an entire experiment in or-
der to complete the task; had the experiments been larger or
more complex this step would not have succeeded as well.
Another possibility is that the decomposition and recompo-
sition of tasks, along with necessary intermediate quality
control steps, could introduce more overhead and cost than
they are worth. For example, it is likely not worth decom-
posing an article into independent sentences and requiring
workers to merge arbitrary sentences into paragraphs. Fi-
nally, in situations where tasks really cannot be decom-
posed, selecting another task market where individuals
have higher skill or motivation (e.g., oDesk, TopCoder)
may be necessary.

Another violation of the assumptions may occur if subtasks
are not independent. For example, while the diversity pro-
vided by multiple judgments was sufficient for the map
phase of the New York City article to succeed, Crowd-
Forge provided no guarantee that workers would not select
diverse information. Providing them information about
other workers’ outputs could be valuable in preventing
workers from all returning the same results. However, the
advantages of providing additional context need to be
weighed against the costs of increased task load (since
workers need to process more information) and the poten-
tial for seeing other workers’ judgments leading to negative
consequences such as cognitive tunneling, information cas-
cades, and production blocking [8][29]. This suggests that
in some contexts (e.g., brainstorming) independent genera-
tion and subsequent merging of output may be superior to
iteration on others’ work, which in others exposure to oth-
ers’ outputs could improve the final product as workers
could build on each others’ work or reduce the bias of an
individual. Understanding the appropriate times and ways
to provide context and visibility into the work of others is
an important area for future crowdsourcing research.

CONCLUSION
In this paper we presented a general-purpose framework for
solving complex problems through micro-task markets.
The framework manages the coordination between workers
so that complex artifacts can be effectively produced by
individuals contributing only small amounts of time and
effort. Based on concepts from coordination science and
distributed computing, the CrowdForge framework pro-
vides a systematic and dynamic way to break down tasks
into subtasks and manage the flow and dependencies be-
tween them.
We demonstrate through three case studies and multiple
experiments how the framework can break down complex
tasks such as writing an article or researching a purchase
decision into flows of partition, map, and reduce subtasks.
In the article writing case we showed that CrowdForge-
produced articles were rated more highly and had lower
variability than individual-produced articles, despite the
coordination requirements of managing and integrating
dozens of workers, and were rated of similar quality as
Simple Wikipedia articles. In an extension to this example,
we showed how to insert a quality control step in the flow
and demonstrated the value of combining the best aspects
of multiple workers’ outputs rather than simple voting. In
the purchase decision case we were unable to get even a
single individual to complete the task given the high effort
involved, but could accomplish the goal using CrowdForge
with low monetary costs. Finally, we explored more com-
plex flows and subtasks using the domain of science jour-
nalism, demonstrating how a popular press article could be
created despite crowdworkers having limited expertise,
time and effort, and context. In this example we also dis-
cuss useful patterns for subtask design, such as the “conso-

lidate” and “analogy” patterns. Finally, we discuss limita-
tions of and fundamental challenges for the approach.
Furthermore, as the nature of work itself becomes more
distributed, such an approach has the potential to change
the way that work gets done, enabling many more people to
be involved in solving complex problems ranging from
business intelligence to writing software. However, mar-
kets don’t work well for complex tasks when the employer
cannot define exactly what they want in advance or if the
contract is difficult to pre-define. The CrowdForge frame-
work reduces this need for predefinition by allowing for
subtasks to be dynamically generated by the market itself.
It also supports scaling up complex tasks to involve many
workers by managing the coordination dependencies be-
tween them.
As general purpose markets continue to evolve, there is a
growing need to be able to solve a wider range of tasks of
increasing complexity and coordination requirements. Al-
though our framework draws from ideas in distributed
computing such as MapReduce, using humans instead of
machines as processors provides both distinct benefits and
challenges. For example, our human-driven partition step is
novel and unique to human computation. However, the
unreliability and unknown expertise of each worker neces-
sitates more complex and nested flows for quality control.
Here we provide a conceptual framework and vision that
we hope will inform and inspire future researchers and task
designers in taking on more complex and even “grand chal-
lenge” tasks that will push the limits of what can be crowd-
sourced.
There are a number of directions we are exploring for fu-
ture work. Most immediately, one challenge is extending
our GUI to support more complex, nested flows so that task
designers with no programming experience can complete
arbitrarily complex work that involves high coordination
dependencies. Looking further ahead, we are interested in
exploring the possibilities of the CrowdForge framework in
very different kinds of task markets. Although in this paper
we implemented systems for two different platforms
(MTurk and CrowdFlower), both have similar worker cha-
racteristics (indeed, many CrowdFlower tasks are posted on
MTurk). If the framework was applied to a market in which
the expertise of individual workers was better known (e.g.,
in a corporation) there might be greater opportunities for
managing resource allocation of workers to appropriate
tasks. Feedback about the selection and quality of their past
work could also be useful for improving resource allocation
if the system had a shared memory of individual workers’
history across tasks.

ACKNOWLEDGMENTS
This work was supported by NSF grants OCI-0943148 and
IIS-0968484, and the Center for the Future of Work, Heinz
College, Carnegie Mellon University.

REFERENCES
[1] Bal, H.E., Steiner, J.G. and Tanenbaum, A.S.

Programming languages for distributed computing
systems. ACM Computing Surveys (CSUR) (1989)
vol. 21 (3).

[2] Becker, G.S. and Murphy, K.M. The division of
labor, coordination costs, and knowledge. The
Quarterly Journal of Economics (1992) vol. 107 (4)
pp. 1137-1160

[3] Boto, http://code.google.com/p/boto/
[4] Callison-Burch, C. Fast, cheap, and creative:

evaluating translation quality using Amazon's
Mechanical Turk. In Proceedings of the 2009
Conference on Empirical Methods in Natural
Language Processing: Volume 1 (2009) pp. 286-295

[5] Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A.,
Funkhouser, T., Rusinkiewicz, S., and Singh, M.
How well do line drawings depict shape? In ACM
SIGGRAPH (2009), 1–9.

[6] Dean, J. and Ghemawat, S. Map Reduce: Simplified
data processing on large clusters. Communications of
the ACM, 51, 1 (2008), 107-114.

[7] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-
Fei, L. "ImageNet: A large-scale hierarchical image
database," cvpr, pp.248-255, IEEE Conference on
Computer Vision and Pattern Recognition (2009).

[8] Diehl, M. and Stroebe, W. Productivity loss in
brainstorming groups: Toward the solution of a
riddle. Journal of personality and social psychology
53, 3 (1987), 497–509.

[9] Django, http://www.djangoproject.com
[10] Ipeirotis, P. (2010, Mar 3). The New Demographics

of Mechanical Turk. http://behind-the-enemy-
lines.blogspot.com/2010/03/new-demographics-of-
mechanical-turk.html. Retrieved 9-21-20

[11] Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly,
D. Dryad: distributed data-parallel programs from se-
quential building blocks. Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, (2007), 59–72.

[12] Heer, J. and Bostock, M. Crowdsourcing graphical
perception: using mechanical turk to assess
visualization design. In Proceedings of CHI (2010).
ACM, New York, 203-212.

[13] Horton, J. J., Rand, D.G. and Zeckhauser, R.J., The
online laboratory: Conducting experiments in a real
labor market (2010). NBER Working Paper Series,
Vol. w15961.

[14] Kittur, A., Chi, E., Suh, B. Crowdsourcing User
Studies With Mechanical Turk. In Proceedings of
CHI (2008).

[15] Kittur, A., Lee, B., Kraut, R. E. Coordination in
Collective Intelligence: The Role of Team Structure

and Task Interdependence. In Proceedings of CHI
(2009). ACM, New York.

[16] Kittur, A. and Kraut, R. E. Harnessing the wisdom of
crowds in wikipedia: quality through coordination. In
Proceedings of CSCW (2008). ACM, New York.

[17] Little, G., Chilton, L.B., Goldman, M., and Miller,
R.C. Turkit: human computation algorithms on me-
chanical turk. In Proceedings of UIST (2010), ACM,
New York, 57–66.

[18] Malone, T. and Crowston, K. The interdisciplinary
study of coordination. ACM Computing Surveys, 26,
(1994), 87-119.

[19] Malone, T., Yates, J. and Benjamin, R. Electronic
markets and electronic hierarchies. Communications
of the ACM, 30 (6). 484-497.

[20] Mintzberg, H. 1979. The Structuring of
Organizations.Prentice-Hall, Englewood Cliffs, N.J.

[21] Olston, C., Reed, B., Srivastava, U., Kumar, R., and
Tomkins, A. Pig latin: a not-so-foreign language for
data processing. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of
data, (2008), 1099–1110.

[22] Salganik, M.J., Dodds, P.S., & Watts, D.J.
Experimental study of inequality and unpredictability
in an artificial cultural market. Science, 311 (2006),
854.

[23] Snow, R., O'Connor, B., Jurafsky, D., and Ng, A.Y.
Cheap and fast---but is it good?: evaluating non-
expert annotations for natural language tasks. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, Association for
Computational Linguistics (2008), 254-263.

[24] Skillicorn, D.B., Talia, D. Models and languages for
parallel computation, ACM Computing Surveys 30(2)
(1998) 123–169.

[25] Sorokin, A., Forsyth, D. Utility data annotation with
Amazon Mechanical Turk, First IEEE Workshop on
Internet Vision at CVPR (2008).

[26] Van de Ven, A., Delbecq, A. and Koenig, R.
Determinants of coordination modes within
organizations. American Sociological Review, 41
(1976), 322-338.

[27] Williamson, O. Transaction-Cost Economics: The
Governance of Contractual Relations. The Journal of
Law and Economics, 22 (2). 233.

[28] Wikipedia Simple entry on New York City,
http://simple.wikipedia.org/wiki/New_York_City

[29] Woods, D. & Cook, R. 1999. Perspectives on human
error: Hindsight biases and local rationality. In F.
Durso (Ed.), Handbook of applied cognition. NY:
John Wiley.

http://code.google.com/p/boto/
http://www.djangoproject.com/
http://www.internetvision.org/
http://www.internetvision.org/
http://simple.wikipedia.org/wiki/New_York_City

	ABSTRACT
	INTRODUCTION
	Mechanical Turk
	approach
	case studies
	Article writing

	The first complex task we explored was writing an encyclopedia article. Writing an article is a challenging and interdependent task that involves many different subtasks: planning the scope of the article, how it should be structured, finding and filt...
	To solve this problem we created a simple flow consisting of a partition, map, and reduce step (see Figure 2). The partition step asked workers to create an article outline, represented as an array of section headings such as “History” and “Geography...
	Next, the reduction step asked other workers to create a paragraph for each section based on the facts collected in the map step. By separating the collection of information and writing into two stages we could significantly decrease the cost of each ...
	We used this approach to create five articles about New York City. Articles cost an average of $3.26 to produce, and required an average of 36 subtasks or HITs, each performed by an individual worker. Partition-workers identified 5.3 topics per artic...
	Quality Control

	The entire task was completed in 54 different HITs for a total cost of $3.70. An excerpt from the resulting product comparison table is shown in Figure 5. We had no success getting even a single worker to generate a similar product comparison chart in...
	Prototype
	Complex flows
	The example of article writing assumed a simple linear flow from partitioning to mapping to reduction, which may not be powerful enough to represent some tasks. For more general cases, subtasks can be themselves be broken down into partition, map and...
	Crowdsourcing Science Journalism

	LIMITATIONS
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

